Fermi Condensation Near van Hove Singularities Within the Hubbard Model on the Triangular Lattice

Dmitry Yudin,1 Daniel Hirschmeier,2 Hartmut Hafermann,3 Olle Eriksson,1 Alexander I. Lichtenstein,2 and Mikhail I. Katsnelson4,5

1Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
2Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany
3Institut de Physique Théorique (IPhT), CEA, CNRS, 91191 Gif-sur-Yvette, France
4Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
5Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia

(Received 4 August 2013; revised manuscript received 20 November 2013; published 20 February 2014)

The proximity of the Fermi surface to van Hove singularities drastically enhances interaction effects and leads to essentially new physics. In this work we address the formation of flat bands (“Fermi condensation”) within the Hubbard model on the triangular lattice and provide a detailed analysis from an analytical and numerical perspective. To describe the effect we consider both weak-coupling and strong-coupling approaches, namely the renormalization group and dual fermion methods. It is shown that the band flattening is driven by correlations and is well pronounced even at sufficiently high temperatures, of the order of 0.1–0.2 of the hopping parameter. The effect can therefore be probed in experiments with ultracold fermions in optical lattices.

DOI: 10.1103/PhysRevLett.112.070403 PACS numbers: 03.75.Ss, 71.10.Fd, 71.27.+a

Introduction.—The study of two-dimensional lattice models can potentially unveil the nature of exotic materials like unconventional superconductors and quantum spin liquids. After their almost simultaneous discovery, high-temperature superconductivity in cuprates [1–3] and the fractional quantum Hall effect [4,5] posed some awkward questions to Landau Fermi liquid theory. For both systems, the Coulomb interaction is sufficiently strong to cause the breakdown of perturbative expansions. In such cases, the concept of quasiparticles providing a basis for understanding most of the condensed-matter phenomena is questionable, and new physics can arise. In cuprates, the large onsite Coulomb repulsion eliminates the double occupancy and changes the statistics of charge carriers, while in the quantum Hall phase it leads to the formation of composite fermions. Both scenarios manifest deviations from Landau Fermi liquid behavior.

It is well known that many body effects are drastically enhanced in the vicinity of anomalies in the single-particle spectrum [6–9]. Soon after high-temperature superconductivity was detected in cuprates, it was pointed out that for the optimal doping the Fermi level lies in the vicinity of van Hove singularities (VHSs) with divergent density of states (DOS), and that in this case the Fermi liquid picture can be violated even for a weak interaction, due to singularities of the electron-electron vertex [7]. The concept of the so-called van Hove scenario has been pushed forward to explain a variety of phases associated with the presence of VHSs, e.g., superconductivity, itinerant ferromagnetism, and density waves. If the VHS is near the Fermi level, both antiferromagnetism and d-wave superconductivity can be produced even at small on-site Coulomb repulsion, as can be shown from a renormalization group (RG) analysis [10–15] or the parquet approximation [14,16]. The nature of exotic ground states is determined by the delicate interplay of these fluctuations, which therefore remain controversial.

Ultracold Fermi gases in optical lattices [17,18] open up completely new opportunities to study exotic states of interacting fermions. Today, the experimental realization of quantum many-body Hamiltonians, such as the Hubbard model, is a reality and a variety of system parameters such as the hopping, lattice type, and Hubbard repulsion can be tuned [17]. However, despite substantial progress in cooling, the achieved temperatures are still relatively high compared to the effective hopping parameter, so critical temperatures of the low-temperature phases cannot be reached. It is therefore important to identify effects that can be probed at these temperatures.

In this Letter, we show that a precursor of a strongly correlated low-temperature instability, possibly chiral superconductivity [19], exists at sufficiently high temperatures and that it can be probed in the paramagnetic phase of fermionic cold atoms on a triangular lattice. The effect can be understood in terms of Fermi condensation.

To clarify this statement, recall that in conventional Landau Fermi liquid theory [20], the free energy is a functional of the quasiparticle distribution function n_k. The particle distribution minimizes this functional, i.e., $\delta F[n_k]/\delta n_k = 0$, which leads to

$$\epsilon_k(T) = \mu(T) + T \log \left(\frac{(1 - n_k)/n_k}{\eta_k} \right).$$ (1)
where ε_k is the dispersion, μ the chemical potential, and T denotes temperature. This expression reproduces the celebrated Fermi distribution $n_k = 1/(1 + e^{(\varepsilon_k - \mu)/T})$. On the other hand, $\varepsilon_k(T)$ is a functional of n_k. As long as the group velocity is positive, all variations δE of this functional are positive and the Fermi distribution corresponds to the minimum. If the group velocity of the quasiparticles becomes negative, there exist variations for which $\delta E < 0$. This leads to a restructuring of the distribution function in a certain interval of momenta $k_l < k < k_f$, where the resulting n_k differs from the Fermi distribution, but still minimizes the functional. In the limit $T \to 0$, $\varepsilon_k = \mu$ and hence the dispersion becomes entirely flat in this interval. In analogy to the Bose-Einstein condensate, this highly degenerate state has been termed Fermi condensation.

The idea was suggested \cite{21,22} in a purely phenomenological background and remains controversial \cite{23}. If it exists, a Fermi condensate is a new state of matter which is topologically different from both the Fermi liquid and the Luttinger liquid \cite{24}. In the context of the van Hove scenario in high-temperature superconductivity, the Fermi condensation was considered in Ref. \cite{25} as a way to demonstrate the precursor effect experimentally. Its logical background and remains controversial \cite{23}. In the context of the van Hove scenario in high-temperature superconductivity, the Fermi condensation was considered in Ref. \cite{25} as a way to demonstrate the precursor effect experimentally. Its logical background and remains controversial \cite{23}.

Model.—We focus on a Hubbard model on the triangular lattice,

$$ H = \sum_{k,\sigma} \varepsilon_k n_{k\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}, \quad (2) $$

with local Coulomb repulsion $U > 0$ and dispersion relation $\varepsilon_k = -2t[\cos(k_x a) + 2 \cos(k_y a/2) \cos(k_z a\sqrt{3}/2)] - \mu$, where $t > 0$ is the hopping amplitude, μ the chemical potential, and a is the lattice spacing. We take $a = 1$ in the following. The reciprocal lattice is spanned by the vectors $G_1 = 2\pi(e_y\sqrt{3} - e_x)/\sqrt{3}$ and $G_2 = 4\pi e_y/\sqrt{3}$, while the first Brillouin zone is hexagon shaped. At $3/4$ filling, logarithmic VHSs (kinks in the DOS) appear in three inequivalent saddle points $M_1 = (0, 2\pi/\sqrt{3})$, $M_2,3 = (\pi, \pm\pi/\sqrt{3})$, and the hexagon-shaped Fermi surface becomes highly nested (Fig. 1). It is well known that in the weak coupling limit $U/t \ll 1$, the dominant instability for a non-nested Fermi surface away from VHSs is related to superconductivity. Contrary to this, at VHSs ($\nabla_k \varepsilon_k = 0$) the Fermi surface has flat sides and is nested as a result. The vector $Q_{\alpha\beta}$ connecting different points M_α and M_β is such that $2Q_{\alpha\beta} = 0$ modulo a reciprocal lattice vector. In what follows we will focus on the model doped exactly to the VHS ($\mu = 2t$) and perfect nesting.

Weak-coupling analysis.—We start our analysis of the RG flow by developing a three-patch renormalization group analogous to Refs. \cite{25,27}. The number of patches for the triangular lattice agrees with the number of inequivalent saddle points, in which the DOS diverges logarithmically: $N = N_0 \log[\Lambda/\max(2t, T)]$ (here Λ is a high-energy cutoff). The problem in question can be reduced to a quasi-one-dimensional one if we introduce those two-particle scattering processes between different patches, which are allowed by momentum conservation. One-dimensional systems are known to be unstable to the formation of pair instabilities in both Cooper (particle-particle) and Peierls (particle-hole) channels, and result in logarithmic singularities for pair susceptibilities. Extending the quasi-one-dimensional analysis we define four different interactions associated with two-particle scattering between different patches: exchange (or backward) scattering (g_1), forward scattering (g_2), umklapp scattering (g_3), and intrapatch scattering (g_4).
FIG. 2 (color online). Main panel: Renormalization group flow of the couplings g_j. Inset: Dispersion relation in the vicinity of the saddle point corresponding to the bare (red or dark gray) and renormalized (blue or light gray) action. The flattening of the band is clearly visible. The plotting region is determined by the cutoff parameter $\Lambda/t \sim 1$.

surface. For the analysis of the low-energy properties we neglect the logarithmically divergent contributions $\chi_{ph}(0)$ and $\chi_{pp}(Q)$, which are parametrically smaller. Restricting the integration region to the patches and placing external inspection of RG flow in Fig. 2 reveals that the couplings the effect of interactions is dramatically enhanced. An noteworthy that to leading order the solution to a set of RG

\[
\chi \propto g_1 \quad \text{for} \quad \omega \gg \Lambda
\]

\[
\Sigma \sim \frac{g_0}{\omega} \quad \text{in the vicinity of the M point}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\chi_{ph}(0) = \frac{g_0}{\omega} \quad \text{and} \quad \chi_{pp}(Q) = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph}(0) = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp}(Q) = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph}(0) = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp}(Q) = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]

\[
\Sigma_{ph} = \frac{g_0}{\omega} \quad \text{and} \quad \Sigma_{pp} = \frac{g_0}{\omega}
\]
vicinity of the Fermi level, this lower band perfectly matches the prediction $\epsilon_k - \mu = T \ln[(1 - n_k)/n_k]$ following from the Fermi condensate hypothesis (thick black line). The bare dispersion is shown for comparison (blue, dashed).

$$G_{\omega}(k) = [(g_{\omega} + g_{\omega} \Sigma_{\omega}(k)g_{\omega})^{-1} + \Delta_{\omega} - \epsilon_k]^{-1}, \quad (5)$$

with the DMFT hybridization function Δ_{ω}.

The resulting spectral function $-(1/\pi)\text{Im}G_{\omega}(k)$ for $U/t = 8$ is shown in Fig. 3. We observe a broadening and flattening of the spectrum at the M point. While flattening of the spectrum is partly present in DMFT due to band renormalization, including spatial correlations leads to the formation of an EVHS. Apart from the incoherent high-energy excitations we observe a well-defined and only slightly dispersive band at low energies, which spans a large region of the Brillouin zone between the M and K points. We have marked the local maxima with a white line. We find that this band agrees perfectly well with the prediction $\epsilon_k - \mu = T \ln[(1 - n_k)/n_k]$ from Eq. (1) (black line) everywhere in the vicinity of the Fermi level. While the results are described by the Landau functional, the self-energy clearly exhibits a power law and hence non-Fermi liquid behavior. For $T \to 0$ this leads to a flat band and Fermi condensation, or the system becomes unstable due to the degeneracy. We therefore interpret the effect as a precursor to a correlated magnetic or superconducting ground state. The formation of this band is correlation driven, as it disappears when the interaction is lowered.

In order to further elucidate the origin of this effect, we note that because of the large DOS at the M point due to the proximity of the VHS, the dominating contribution to the convolution in the self-energy (4) in the vicinity of the M point is expected to stem from the vicinity of the Γ point. An analysis of the leading eigenvalues of the Bethe-Salpeter equation reveals that the spin channel dominates in the vicinity of Γ in agreement with our RG analysis, where intrapatch scattering is found to give the dominant contribution. Hence the effect results from the combination of a large DOS and coupling to strong ferromagnetic spin fluctuations. Indeed, our calculations unambiguously determine this effect to originate from collective excitations in the spin channel [28]. The observed tendency to ferromagnetic ordering due to frustration is in line with previous results [35].

The large self-energy in the vicinity of the M point leads to both a broadening of the spectrum and a strong reduction of spectral weight at the M point, also in agreement with the RG. The flattening is considerably stronger in non-self-consistent calculations, where attenuation of the fluctuations due to damping of quasiparticles at the M point is not taken into account [28]. The absence of the low-energy band in second-order approximation to the dual self-energy underlines the importance of the feedback of collective excitations onto the electronic degrees of freedom.

In the top panel of Fig. 4 we plot the so-called broadened Fermi surface within ±0.1 electrons for $U/t = 8$ and $T/t = 0.1$. The lower left sextant shows the noninteracting result.

$G_{\omega}(k) = [(g_{\omega} + g_{\omega} \Sigma_{\omega}(k)g_{\omega})^{-1} + \Delta_{\omega} - \epsilon_k]^{-1}, \quad (5)$

spin channel [28]. The observed tendency to ferromagnetic ordering due to frustration is in line with previous results [35].

The large self-energy in the vicinity of the M point leads to both a broadening of the spectrum and a strong reduction of spectral weight at the M point, also in agreement with the RG. The flattening is considerably stronger in non-self-consistent calculations, where attenuation of the fluctuations due to damping of quasiparticles at the M point is not taken into account [28]. The absence of the low-energy band in second-order approximation to the dual self-energy underlines the importance of the feedback of collective excitations onto the electronic degrees of freedom.

In the top panel of Fig. 4 we plot the so-called broadened Fermi surface within ±0.1 electrons for the value 0.5 corresponding to the interacting Fermi surface for given temperature. This quantity is directly related to the occupation function for different momenta, which is experimentally measurable [17]. The comparison with the noninteracting case shows that the effect of flattening is substantial. Increasing the interaction strength U strongly enhances the flattening while lowering the temperature mitigates it. The correlation-driven effect can, nevertheless, clearly be separated from this purely thermal effect even at the highest temperatures (see Supplemental Material [28]). We find that the effect persists up to shifts in chemical potential of at least 0.5t, showing that it is robust to the presence of a trapping potential.

Conclusions.—In summary, we have investigated the formation of extended van Hove singularities in the triangular lattice. The renormalization group and strong-coupling numerical analysis establish the phenomenon as driven by many-body interactions: The interplay of many-particle scattering and nesting leads to band flattening near van Hove singularities. The related high intensity in the spectral function may find interesting applications in tunneling experiments or spintronics. The phenomenon can be interpreted as a precursor to a strongly correlated many-body
ground state. Its study in the controlled environment of cold atom experiments may fundamentally improve our understanding of correlated systems. We have shown the effect to be robust when tuning interaction, temperature, and chemical potential. In particular, its signature in the occupation function is found to persist to relatively high temperatures, making the phenomenon detectable in experiments with ultracold atoms in optical lattices. The flat band could be observed directly via band spectroscopy [36] or indirectly via the momentum distribution function accessible in experiments with ultracold atoms in optical lattices. The flat band could be robust when tuning interaction, temperature, and chemical potential. In particular, its signature in the occupation function is found to persist to relatively high temperatures, making the phenomenon detectable in experiments with ultracold atoms in optical lattices. The flat band could be observed directly via band spectroscopy [36] or indirectly via the momentum distribution function accessible in experiments with ultracold atoms in optical lattices. The flat band could be robust when tuning interaction, temperature, and chemical potential. In particular, its signature in the occupation function is found to persist to relatively high temperatures, making the phenomenon detectable in experiments with ultracold atoms in optical lattices. The flat band could be observed directly via band spectroscopy [36] or indirectly via the momentum distribution function accessible in experiments with ultracold atoms in optical lattices.

We thank K. Sengstock, Ch. Becker, and A. Rubtsov for fruitful discussions. We further acknowledge support from the Deutsche Forschungsgemeinschaft (SFB925), the CUI Cluster of Excellence, and computer support from the NIC, Forschungszentrum Jülich, under project HHH14. M. I. K. acknowledges financial support from ERC (project 338957 Forschungszentrum Jülich, under project HHH14. M. I. K. acknowledges financial support from ERC (project 338957 Forschungszentrum Jülich, under project HHH14. M. I. K. acknowledges financial support from ERC (project 338957 Forschungszentrum Jülich, under project HHH14.